staticvoidMain(string[] args) { MLContext mlContext = new MLContext();
// 1. Import or create training data HouseData[] houseData = { new HouseData() { Size = 1.1F, Price = 1.2F }, new HouseData() { Size = 1.9F, Price = 2.3F }, new HouseData() { Size = 2.8F, Price = 3.0F }, new HouseData() { Size = 3.4F, Price = 3.7F } }; IDataView trainingData = mlContext.Data.LoadFromEnumerable(houseData);
// 2. Specify data preparation and model training pipeline var pipeline = mlContext.Transforms.Concatenate("Features", new[] { "Size" }) .Append(mlContext.Regression.Trainers.Sdca(labelColumnName: "Price", maximumNumberOfIterations: 100));
// 3. Train model var model = pipeline.Fit(trainingData);
// 4. Make a prediction var size = new HouseData() { Size = 2.5F }; var price = mlContext.Model.CreatePredictionEngine<HouseData, Prediction>(model).Predict(size);
Console.WriteLine($"Predicted price for size: {size.Size*1000} sq ft= {price.Price*100:C}k");